Junctional expression of the prion protein PrPC by brain endothelial cells: a role in trans-endothelial migration of human monocytes.
نویسندگان
چکیده
The conversion of prion protein (PrP(C)) to its protease-resistant isoform is involved in the pathogenesis of prion diseases. Although PrP(C) is highly expressed in neurons and other cell types, its physiological function still remains elusive. Here, we describe how we evaluated its expression, subcellular localization and putative function in brain endothelial cells, which constitute the blood-brain barrier. We detected its expression in microvascular endothelium in mouse brain sections and at intercellular junctions of freshly isolated brain microvessels and cultured brain endothelial cells of mouse, rat and human origin. PrP(C) co-localized with the adhesion molecule platelet endothelial cell adhesion molecule-1 (PECAM-1); moreover, both PrP(C) and PECAM-1 were present in raft membrane microdomains. Using mixed cultures of wild-type and PrP(C)-deficient mouse brain endothelial cells, we observed that PrP(C) accumulation at cell-cell contacts was probably dependent on homophilic interactions between adjacent cells. Moreover, we report that anti-PrP(C) antibodies unexpectedly inhibited transmigration of U937 human monocytic cells as well as freshly isolated monocytes through human brain endothelial cells. Significant inhibition was observed with various anti-PrP(C) antibodies or blocking anti-PECAM-1 antibodies as control. Our results strongly support the conclusion that PrP(C) is expressed by brain endothelium as a junctional protein that is involved in the trans-endothelial migration of monocytes.
منابع مشابه
Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملThe effect of microRNA-125 on the adhesion molecule expression of integrin beta2 and adhesive determination of endothelial cells isolated from human aorta to monocyte
Background: The immune-mediated responses in vascular cells may include the increased expression of endothelial adhesion molecules, leukocyte rolling and infiltration, cellular lipid dysregulation and vascular smooth muscle cells (VSMCs) differentiation. Investigating the cellular and molecular events involved in the rolling process is useful for treatment or prevention of the vessel stenosis es...
متن کاملP 61: MicroRNA as a Therapeutic Tool to Prevent Blood Brain Barrier Dysfunction in Neuroinflammation
Endothelial cells present in brain are unique and differ from other peripheral tissues in a number of ways, which ensures specific brain endothelial barrier properties. Endothelial dysfunction is the earliest event in the initiation of vascular damage caused by inflammation. Various microRNAs (miRNA) have been discovered in different cellular components of the blood bran barrier (BBB). miRNAs a...
متن کامل3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression
New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 119 Pt 22 شماره
صفحات -
تاریخ انتشار 2006